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1 Summary

Type of problem: kinetic or fluid neutral transport

Physics or algorithm stressed: thermal force term (spatial resolution) in
momentum transport equation and treatment of collisions (charge ex-
change)

Dimensionality & temporal variation: 1-D in space; steady state.

Type of solution: semi-analytic

Relevance: Divertor plasmas can be cool and dense enough for atoms to be
in or near the fluid regime.

2 Detailed Description

2.1 Equations Solved

The fluid equations in Ref. [1], derived under the assumption of a constant
charge exchange cross section, contain terms representing the thermal force
and diffusion thermoeffect. To isolate these effects, we ignore the terms cor-
responding to viscosity, ionization, and recombination, although these pro-
cesses may be significant in a physical situation. The resulting fluid neutral
continuity and momentum balance equations in a slab geometry are

d

dx
(Nv) = 0 (1)

d

dx

(
mNv2 + NT

)
= αT N

dT

dx
−mνcxNv, (2)

where N is the neutral density, v its flow velocity, T is its temperature
(assumed equal to the ion temperature Ti), and m is the ion and neutral
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mass. The thermal force coefficient, αT = 0.24, and the charge exchange
frequency, νcx = 2.93σcxni(T/m)1/2, where ni is the ion density.

2.2 Specific Details

2.2.1 Geometry

The specific geometry used for solving Eq. (2) is an L = 1 m long box.

2.2.2 Plasma Parameters

A linear ion temperature profile is assumed, ramping up from Ti(0) = 1 eV
to Ti(L) = 10 eV. The ion density is computed from a constant pressure
assumption,

ni(x) = (nminTmax)/Ti(x), (3)

where we take nmin = 8.5× 1018 m−3.
As noted above, the charge exchange cross section is assumed to be a

constant. The particular value we use, σcx = 4× 10−19 m2, has been chosen
to roughly correspond to the actual (not constant in general) charge exchange
cross section [2] used in neutral transport simulations.

Note that the dimensionless parameter lmfp/L needs to be small enough
for the fluid approximation to be valid. Here, lmfp = (T/m)1/2/νcx is the
charge exchange mean free path (∝ 1/ni), A practical criterion is max(lmfp/L) ≤
0.1 (“max” refers to the maximum value over the problem space).

2.2.3 Boundary Conditions

The x = 0 surface is a neutral entrance and x = L is an exit. The simulation
would be run in 1-D or equivalent.

2.2.4 Sources and Sinks

The neutral source corresponds to a gas puff at x = 0 of S = 1019 H atoms per
second. Note, however, that the data provided here are normalized so that
the actual magnitude of the flux is irrelevant. The atoms have a Maxwellian
energy distribution with a temperature of 1 eV [i.e., matching the value of
Ti(0)].
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2.3 Description of Solution Method

With a neutral source on one end of the slab (x = 0) and an exit at the
other (x = L), Eq. (1) implies that the flux N(x)v(x) ≡ j(x) = S/A (A is
the effective cross sectional area of the slab) is constant. The exit represents
a non-fluid boundary condition, meaning that we will only be able to find
approximate solutions to Eq. (2).

First, consider a standard fluid approach in which we take N(L) = 0 and
mv2 � T . Equation (2) can then be integrated directly to yield

N1(x)

N1(0)
=

[
T (x)

T (0)

]αT−1 {
1−

∫ x
0 dx′ νcx(x

′) [T (x′)]−αT∫ L
0 dx′ νcx(x′) [T (x′)]−αT

}
. (4)

We can plug this solution back into Eq. (2) and solve for the v on the
right-hand side (again neglecting v2 on the left hand side):

v(x) =
T (x)1−αT

m

{∫ L

x
dx′ νcx(x

′) [T (x′)]
−αT

}−1

. (5)

In particular, this can be evaluated at x = 0, allowing us to relate the neutral
density there to the source strength

N1(0) = S/[v(0)A], (6)

permitting an absolute comparison of this profile with one obtained from
some other code. However, as we will discuss further below, comparing ab-
solute densities will, in general, be less insightful than comparing normalized
density profiles.

A second approach is to extend the fluid model by writing the exiting
flux as j(L) = γN(L)[T (L)/m]1/2, where γ ∼ 1 (γ < 1) is an undetermined
numerical factor. We expect the results to be insensitive to the precise value
of γ; this point will be discussed in detail in Sec. 3. Equation (2) can then
be written in terms of the relative density η ≡ N2(x)/N2(L),

dη

dx
= −


(1−αT )
T (L)

dT (x)
dx

η + γνcx

[T (L)/m]1/2

T (x)
T (L)

− γ2

η2

 , (7)

and numerically integrated from x = L to x = 0 using specified plasma
temperature profiles.
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Alternatively, the parameter γ can be eliminated by defining η′ ≡ N2/[γN2(L)],

dη′

dx
= −


(1−αT )
T (L)

dT (x)
dx

η′ + νcx

[T (L)/m]1/2

T (x)
T (L)

− 1
η′2

 , (8)

In terms of the source strength, the absolute density is then

N(x) =
S

A[T (L)/m]1/2
η′(x). (9)

Note also that

N(L) =
S

Aγ[T (L)/m]1/2
. (10)

Once the integrations in Eqs. (4) and (8) have been carried out, we could
use Eqs. (6) and (9), respectively, to determine the corresponding absolute
density profiles for a particular S. However, the better approach when com-
paring a simulation code with these results is to first focus on the normalized
profiles. E.g., in the second solution γ controls the rate at which particles
flow out the exit. For a given S, a smaller γ corresponds to a lower exit speed
and, by flux conservation, a higher overall density. Consequently, the abso-
lute N(x) profile (for fixed S) is sensitive to the value of γ, which we do not
know a priori. But, by normalizing the density profile, say, to a particular
N(0), all of the variation with γ is confined to the region near x = L. This
effectively corresponds to choosing a value of S that yields that particular
density at that normalization point. If the simulation result and N2/N(0)
agree satisfactorily for x < L, then the value of γ can be varied to improve
the agreement near x = L.

Even after the value of γ has been optimized, the value of S corresponding
to this N(0) [via Eq. (9)] will differ from that used in a kinetic simulation
code. The particle velocity distribution function associated with Eq. (9)
at x = L is only an approximation to the one that obtained by a fully ki-
netic treatment of the exit boundary condition. Correspondingly, the average
(flow) velocity at x = L will not be the same in the two cases. Hence, to get
the two densities to match at x = L (or anywhere else), we will need different
particle fluxes, i.e., values of S.
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3 Model Results

The text file associated with this document contains the input plasma profiles
as well as results corresponding to the approximate fluid solutions, Eqs. (4)
and (7). Figure 1 is a plot of these same data. Note that the mesh is uni-
formly spaced, except for “guard” cells near the ends. The uniform spacing
allows the spatial resolution to be easily characterized while the “guard” cells
provide us with solution values near x = 0 and x = L.

The integral in Eq. (4) is computed using the trapezoidal rule. Equa-
tion (8) is integrated numerically using the LSODE [3] routine from x = L to
x = 0 using η′(L) = 1/γ as an initial condition; for this reason, 1/γ is a more
convenient parameter to work with than γ. Here, we take 1/γ = 1.01.

Note that the two approaches to a solution rely on different normaliza-
tions. To simplify comparison with simulation results, as noted in Sec. 2.3,
we re-normalize the second solution, from Eq. (8), so that it has the same
value as N1(x)/N1(0) at the first value of x; we refer to this as N2(x)/N(0)
below and in Fig. 1.

Without a more accurate solution, we can only provide plausible estimates
of the errors in these solutions. First, since we suspect that N2(x)/N(0)
is more accurate than N1(x)/N1(0), we use the difference between the two
solutions as the error bars for the latter.

Second, we set the error bars of N2(x)/N(0) using its variation with 1/γ.
As was pointed out in Sec. 2.3, we expect 1/γ ∼ 1 (and 1/γ > 1); i.e., the
exit speed is close to the sound speed at x = L. We find that for 1/γ > 2
the resulting N2(x)/N(0) depends noticeably on 1/γ. Since this means that
the boundary condition is being “felt” well upstream, we suspect that the
“correct” value of 1/γ is < 2. We then use the resulting range of 1/γ to
set the error bars on N2(x)/N(0). In particular, the error is equated to
N2(x; 1/γ = 1.01)/N(0)−N2(x; 1/γ = 2)/N(0).

x = distance from source in meters.
N1(x)/N1(0) = Result of first analytic model, normalized to 1 at x = 0.
N1/N1(0)err = Estimated error in result of first analytic model.
N2(x)/N(0) = Result of second analytic model normalized to same

value at x = 5× 10−4 m as the first analytic model.
N2/N(0)err = Estimated error in result of second analytic model.
Ti(x)(eV) = ion temperature in eV.
ni(x)(m^-3) = ion density in m−3.
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Figure 1: (a) Assumed ion density and temperature profiles and (b) normal-
ized neutral density variation with x in the two analytic solutions, Eqs. (4)
and (7).
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